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The notion of general exponent of impulsive homogeneous differential equations 
is defined. A formula for the solution of impulsive nonhomogeneous differential 
equations is obtained and is used to establish a dependence between the existence 
of bounded solutions of such equations and the general exponent of the respective 
homogeneous equation. 

1. INTRODUCTION 

Impulsive differential equations are used to study dynamical processes 
that are subject to short-time perturbations during their evolution. The 
duration of these perturbations is negligibly small; that is why they are 
considered momentary, i.e., the perturbations are in the form of impulses. 
Dynamical processes with such perturbations are studied, e.g., in physics, 
chemistry, and control theory. 

The qualitative theory of impulsive equations was originated by Mill- 
man and Myshkis (1960) and was further developed by Myshkis and 
Samoilenko (1967), Samoilenko and Perestiuk (1977), and Simeonov and 
Bainov (1985a,b). Zabreiko et aL (to appear) marks the beginning of the 
investigation of impulsive equations in a Banach space. In the present paper, 
following the ideas of Daleckii and Krein (1974), a formula for the solution 
of the nonhomogeneous impulsive linear equation is derived and is used 
to establish a dependence between the existence of bounded solutions of 
this equation and the general exponent of the respective homogeneous 
equation. 
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2. S T A T E M E N T  O F  T H E  P R O B L E M  

Consider the following impulsive differential equation: 

dx 
dt A( t )x[ t , t .  (1) 

x(t.+O)=Q.x(t.-o) (2) 

where A(t )  (t>_to) and Qn (n = l, 2, . . .) are linear, bounded operators 
mapping the complex Banach space X into itself, and t~ (n = 1, 2 , . . . )  are 
fixed impulsive moments satisfying the condition 

0 = to < t l  < t 2  < " " " , l im  t. = co 
n - -~co  

Definition 1. We shall call a solution of the impulsive equation (1), (2) 
a piecewise continuous function x(t) with points of discontinuity of first 
type tl, ts . . .  such that 

for t # t. and 

dx 
dt A ( t ) x ( t )  (3) 

x ( tn+O)=Q~x( t~ -o )  (n = 1,2, ~176 .) 

Assume that at the points of discontinuity the function is left con- 
tinuous. Denote by U(t, r) the evolutionary operator of equation (1). For 
any x o e X  the impulsive equation (1), (2) has a unique solution x( t )  
satisfying the condition 

X(to) = Xo (4) 

Consider the operator-valued function V(t)  defined by the formula 

V(t)Xo=X(t)  (to~< t <oo) 

where x(t) is the solution of (1), (2) with initial condition (4). 

Lemma 1. Let the operators On (n = 1, 2 , . . . )  be invertible. Then, for 
t~ _< t < t~+~ (n = 0, 1 , . . . )  the following equality holds: 

V(t)  = U(t, tn)QnU(tn, t~-l)Q~-l . . . Q1U(q~ to) (5) 

and the evolutionary operator of the impulsive equation (1), (2) has the form 
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U(t, t ,)[ ?(~l QjU(tj, tj-1)]OkU(tk, T) 
j = n  

( tk-1 < ,r <_ tk < tn < t <_ t,+~) 
W(t, ~') = (6) 

U(t, t.) QjU(tj, tj+~) Q~aU(rk, s) 
I- j = n  

(t._l <t<~t. <tk <s<--tk+O 

Lemma 1 is proved by straightforward verification. 

Definition 2. A general exponent Kg of the impulsive equation (1), (2) 
we shall call the greatest lower bound of all numbers P such that for each 
solution x ( t ) =  V(t)Xo (xoeX)  of the impulsive equation (1), (2) the 
inequality 

IIx(t)ll-- N, eP~'-'~llx(~')ll 
holds, where the number N o does not depend on the choice of Xo. 

3. M A I N  R E S U L T S  

We shall give conditions under which the general exponent of the 
impulsive equation is finite. We shall obtain a fundamental formula for the 
solution of a nonhomogeneous impulsive differential equation and show 
the relation between the existence of bounded solutions of such equations 
and the general exponent of the impulsive equation (1), (2). 

Theorem 1. Let the operators Q,(n = 1, 2 , . . . )  be invertible. Then a 
necessary and sufficient condition for the general exponent Kg of the impul- 
sive equation (1), (2) to be a finite number is the existence of T >  0 satisfying 
the inequality 

Kr = o<suP<T II W(t, ~')11 <oo (7) 

Proof The proof of Theorem 1 is a modification of the proof of 
Theorem 4.2 of Daleckii and Krein (1974). I 

Corollary I. Condition (7) implies the estimate 

% <-r-1 In o suP< r II w(t,  r)[I (8) 

Remark 1. % < ~ implies inequality (7) for any T>0. 

Definition 3. The operator-valued function A(t) (t>-to) is called 
integral-bounded with a constant M if for t--- to the following inequality 
holds: 

f ,+l IIA(~') [I (9) d~-<_ M 
t 
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Theorem 2. Let the following conditions hold: 
1. The operators Qn(n = 1, 2 . . . .  ) are invertible. 
2. The operator-valued function A(t) is integral-bounded with a con- 

stant M. 
3. SUpo<_t-.,-<_TH.,.~_,,~<t [[Qn[[_<A for ~---- to, where T > 0 ,  A_>0 are con- 

stants. 
Then Kg < oo. 

Proof. In view of (8) and Lemma 1, we obtain the inequalities 

Kg--<T -1 In sup [[ U(t, t , )Qn"" Qk+lU(tk+l, tk)QkU(tk, "r) H 
O< t - ~ - <  T 

x [[Q.II"" IIQgll} 

= T-11noSU_p_< ~ {exp[ f: IIA(s)[I ds] HQ.I'""" 'IQ~I[} 
T-11n sup {expEM(2+T)]  [ I Q ~  IlQkli} 

0 - -  < t - - ' r - -  < T 

-< T -11n{exp[M(2+ T)]A} < oo 

Theorem 2 is proved. [] 

Consider the impulsive equation 

dx 
-~t = A( t)x + f (  t) [t~ t, (10) 

x(t~+O)=Qnx(to) (n = 1 , 2 , . . . )  (11) 

where the function f ( t)  (t >-to) assumes values in X. 

Lemma 2. Let the operators Q~ (n = 1, 2 , . . . )  be invertible. Then the 
solution of the Canchy problem for the impulsive equation (10), (11) with 
initial condition (4) is given by the fomula 

x(t) = W(t, to)xo+ W(t, ":)f(r) d~" (12) 
to 

Lemma 2 is proved using standard methods. 

Theorem 3. Let the operators Qn ( n =  1 ,2 , . . . )  be invertible. Let, 
moreover, 

x(O) =0  (13) 
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and to any function f(t) continuous and bounded on [0, oo) there corre- 
sponds a bounded solution x(t) of the Cauchy problem for the impulsive 
equation (10), (11) and initial condition (13). 

Then there exist constants N, v > 0 such that for t---0 the following 
inequality holds: 

II v( t ) l l  ~- Ne-" (14)  

Proof By Lemma 2 the solution of the Cauchy problem for the impul- 
sive equation (1), (2) and initial condition (13) has the form 

f, x( t )  = ' w ( t ,  T)f(~-) d~- 
~ 0  

Consider the space C(X) of all continuous and bounded functions 
g(t) ( 0 -  < t<oo) with values in X a n d  norm 

I l g l l c  = sup I Ig ( t ) l [  (15) 
0<:__ / .<  oO 

For any t fixed, consider the linear operator Vt: C(X)-~ X defined by 
the formula 

;o Vt(f) = W(t, "c)f(z) d~" 

From the estimate 

;o ][ v , ( / ) l l  -< [[w(t, r ) l l ,  d~- I I / l lc 

it follows that the operator V, (t - 0) is bounded. In virtue of the conditions 
of Theorem 3 the family of operators V~ (t->0) is uniformly bounded for 
each f ~  C(X). Then by the theorem of Banach-Steinhaus there exists a 
constant k > 0 such that for t -  0 the following inequality holds: 

]lx(t)][ = [[ V,(f)[[-  k. Ijf[[c (16) 

Set X(t)= [] V(t)[[ and consider the function f(t)=[v(t)/l[v(t)[Hy, where 
y is an arbitrary element of X. From the inequality [[f[[c -< [[Y][ it follows 
that the function f belongs to C(X). The solution x(t) of the impulsive 
equation (10), (11) corresponding to f(t) is represented by the formula 

x(t) = W(t, ~" yd~'= yd'c= V(t)y~p(t) 

where 

q~(t) = Jo X( ' r )  
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From (16) we deduce the estimate [[] V(t)y[l/[[y][]r which implies 
the inequality r  >- 1 /k ( t  ~ t,). Since the function ~p(t) is absolutely 
continuous, integrating the last inequality from 1 to t gives 

~p(t)_> q~(1) e (`-l)/k 

i.e. 

1 ~(t) >~(1)  - -  e(t_l)/k 
x ( t )  =~~ k k 

We set v=  l /k ,  N1 = ke l /k~(1)  and obtain 

IIv(t)ll =X(t)<- N1 e -~' (t_>l) 

whence it follows that 

[IV(t) l l<-Se -~t (t->0), 

where 

m = max(N1, max e~'tl V(t)[J) 
0 _ < t ~ l  

This completes the proof of Theorem 3. I 

Theorem 4. Let the operators Q, (n = 1, 2 , . . . )  be the invertible and 
let the general exponent % of the impulsive equation (1), (2) be negative. 

Then for each bounded and continuous function f ( t )  the Cauchy 
problem for the impulsive equation (10), (11) with initial condition (13) 
has a solution which is bounded on the semiaxis t >-0. 

Proof. The solution of the Cauchy problem for the impulsive equation 
(10), (11) and initial condition (13) has the form 

x( t )  = W(t,  r ) f ( r )  dr 
o 

In view of the condition of Theorem 4, there exist constants N, v > 0 such 
that for 0_< ~-_< t < a3 the following inequality [[ W(t, ~-)[[ -< N e  -~('-~) holds. 
For [[x(t)][ we obtain the estimate 

Itx(t)[[ <- II w(t ,  ~')tl " [[ f(~')ll d~r 
o f' 

-< S e - ' ( ' - ' )  dz- ]lfllc 
to 

_~--NIIfll~(l- e-~' ) 

-<Nllfllc < ~  
/ /  
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Theorem 4 is proved. II 

We shall find conditions under which the general exponent of the 
impulsive equation (1), (2) is negative. 

Theorem 5. Let the following conditions be fulfilled: 
1. The operators Q,(n = 1, 2 , . . . )  are invertible. 
2. The conditions of Theorem 2 hold. 
3. For each function f c  C ( X )  the Cauchy problem for the impulsive 

equation (10), (11) and initial condition (13) has a solution which is bounded 
for t>-0. 

Then the general exponent of the impulsive equation (1), (2) is negative. 

Proof The boundedness of the solution of the Cauchy problem for the 
impulsive equation (10), (11) with initial condition (13) implies the 
boundedness of the solution of the problem 

dx 
- : - = A ( t ) x + f ( t ) ,  t-> t*> O, t # t .  (17) 
clt - - 

x ( t , + O ) = Q , x ( t , ) ,  t r  t, (18) 

for n - 1, 2 , . . . ,  with initial condition 

x(t*) =0 (19) 

In fact, let tin_ 1~ t* < tin. Then the solution of problem 
given by the formula 

I 
t 

x( t )  = W(t, T)f(T) d~" 
t* 

17)-(19) is 

(20) 

where the function W(t, ~-) is defined by equality (6). Consider the Cauchy 
problem 

dx~(t) 
- A ( t ) x ~ ( t ) + f ( t )  for t->O, t ~ t .  (21) 

dt 

x~( t ,+O)=Q,x~( t , ) ,  n = l , 2 , . . .  (22) 

with initial condition 

x~(O)=O (23) 
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0 for O<-t<t*-e  

f~ ( t )=  l f ( t * ) ( t - t * + e )  for t*-e<-t<-t* 
E 

f ( t )  for t>_t* 

The solution of problem (21)-(23) is represented in the form 

S S x,(t) = W(t, r)f~(z) dz+ W(t, ~')f(r) de 
*-~ t* 

As in the proof  of  Theorem 3, a constant k can be found such that the 
estimate []x~(t)]]-< k.  [[fl[c holds. Following the scheme of  the proof  of 
Theorem 3 with minor modifications, we obtain the estimates 

S' I W(t, r)f(r) dr <- kllfllc 
t* 

II w (  t, t*)ll-< N e -~ ' - '* )  

where v = I/k, N>-max{kel /k/~(T) ,  P}, and 

I t*+T dr 
~o(T) = P =  max e~r W(t, t*)[I 

J,* IIW(t , t*)l l '  o<_,-,*_<~ 

We shall show that N can be chosen independent of  t*. In fact, for 
t e (t*, t * +  T] the following estimates hold: 

t*+T e -M(T+2)  
~(T)--- J,. e-M(T+2) A-l d'r= ~ T 

-< max {e~('-'*)llW(t,t*)l[} 
tc[ t*,t*+ T] 

- m a x  e v(t-t*)+M(T+2)A 
t~[t*, t*+T] 

< eTv+M(T+2)A 

We set 

and obtain 

N = el/k+M(r+2)A max{k/T,  e T-l} 

II W(t, t*)ll<-Ne -~('-'*) ( t*>0)  

i.e., for 0-< r-< t < oo the following inequality holds: II w ( t ,  r)II-<- N e -~C'-~). 
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Theorem 5 is proved. [] 

Theorem 6. Let the operators Qn (n = 1, 2 , . . . )  be invertible and Kg < 0o. 
Then a necessary and sufficient condition for Kg<0 is the existence of a 
positive constant T and of a constant q ~ (0, 1) such that for x ~ X and t >- 0 
there exists a number  0x, t ~ [0, T] satisfying the inequality 

II w(t+ 0x,,, t)ll-< q" Ilxl[ (24) 

Proof The necessity is proved in a trivial way. We shall prove the 
sufficiency. Let 0 < - t-< t<eo .  Let k and 1 be indices such that t-~ (tk, tk+a] 
and 2t~(h,  h+~] and denote R =max{maxj=k,...,t IIQjlI, 1}. For any z,,r'~ 
( {, 2t] there exists a number  0' such that for ]z - r'l-< 0' there exists an index 
i satisfying the double inequality ti-1---z, r '---ti+l. The continuity of  the 
operator U(t, s) implies the existence of a number  0" such that for I t -  ~'[ <- 
0" and z,'r'E[~2t) the estmate ]]U(r,z')I[<-I/q~/2R '/2. We set O= 
min{O', 0"} and obtain that for all z, z '~  [t, 2t) satisfying the condition 
] z -  ~-'[- < 0 and z ' <  ti < - z for some index i =  k , . . . ,  I the following estimate 
holds: 

[[ W(~', r = [] U(z, t~)Q~U(t~, z')[[ 

--11 uo',  t,)ll" IIQ, I[" l[ V(ti, 7"')[1 
1 1 1 

-- ql/2 R1/2 R ql/eRl/2 - q 

When the interval 0-', z] contains no member  of  the sequence {tn} we again 
obtain the estimate 

1 1 
II w(~, ~')ll--II u0,,  ~')l l-  ql/2R,/2- q 

On the other hand, since Kg < oo, then, by Theorem 1, the inequality 
supo_<t-~_<T II w(t, ~)11 <co  is satisfied. 

Further, the proof  of  Theorem 6 is a modification of the proof  of  
Theorem 6.1 of  Daleckii and Krein (1974). [] 

Theorem 7. Let the operators Qn (n = 1, 2 , . . . )  be invertible and let p 
be a positive number. Then the general exponent Kg is negative if and only 
if there exists a positive constant c such that for t* -< z < 0o the inequality 

f ~  ]l W( t, ~)xll v at} '/v <- Cllxtl 

holds, where t * >  0 is some fixed point. 
The proof  of  Theorem 7 is analogous to the proof  of  Theorem 6.2 of  

Daleckii and Krein (1974). 
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Definition 4 (Daleckii and Krein, 1974). C : X --) X is called w-limiting 
for the operator-valued function A(t) (t > - to) if there exists a sequence 
~. -->.~o~oo such that a(~.)-->.~ooC. 

Definition 5 (Daleckii and Krein, 1974). The operator-valued function 
A(t) (t >>- to) satisfies condition S~,L if for some e > 0 and L >  0 there exists 
a number T >  0 such that for s, t _  T and Is - t l -<  L the inequality IIA(s)- 
A(t)[[-< e holds. 

Definition 6 (Daleckii and Krein, 1974). The operator-valued function 
A(t) (t >- to) is compact if from any sequence {A(tn)} a subsequence conver- 
gent to some linear bounded operator mapping X into X can be chosen. 

We shall need the following lemma. 

Lemma 3. Let ~(t)  (t -- ro) be a nonnegative, piecewise left-continuous 
function with points of discontinuity_of first type, let h(t) (t>-'ro) be a 
continuous, nonnegative function, and let c - -0  be a constant. 

Let the following inequality hold: 

~(t)<-c+ h(r)~(z) dr 
0 

Then 

q~(t)<-c exp[ f'oh(Z) dz I 

Proof Consider the operator K acting in the space D(R %, X)  of the 
piecewise, left-continuous functions with points of discontinuity of  first 
type and with values in X and defined by the equality 

. /  

(K~)(t) = h ( r ) ~ ( r )  clr 
TO 

The operator K is of Volterra type; hence, its spectral radius is equal 
to zero. Then the following estimate holds: 

r 

where q,(t) is a solution of the integral equation 

qJ(t) = c+ h(r)~O(.c) dr 
0 

A straightforward verification shows that 

q/(t) = c exp h(r) dr 
0 
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Lemma 3 is proved. [] 

Lemma 4. Let Wk(t,S ) ( k = l , 2 ) )  (a<-s,t<-b) be the respective 
evolutionary operators of impulsive equations 

dx 
dt - Ak(t)xltet" 

x(t,+O)=Qnx(t,,), n = 1 , 2 , . . . ;  k = 1 , 2  

If there exist numbers N > 0 and 1,1 ~ (-co, oo) such that the inequality 

[[Wl(t,s)l[<_Ne -",(t-s) (a<_s,t<_b) 

holds, then the following inequality holds as well: 

II w=(t, s)II <- N e x p [ -  ~'l(t - s)] 

Proof It suffices to prove Lemma 4 for a = s = 0. The operator V2(t) = 
W2(t, 0) is a solution of the impulsive operator system 

dV2 
d--7 - A, W2 = (A2 - A1) W2l ,r 

V2(t. +O)=Q.V(t .)  

v2(o)  = i 

where I is the identity map in X. 
Consider the impulsive operator system 

dX 
H--~-AIX= F(t)[,~t. 

X(t .+O) = Q.X(t .)  

x ( o )  = x 

where F(t)= [A2(t)-Al(t)]V2(t). Its solution in view of (12) is given by 
the formula 

V2(t) = W,(t, 0)+ W,(t, z)[A2(z)-A,(z)]V2(z) dz 

We set ~( t )  = II V2(t)[[ and obtain 

L q~(t)<-Ne-"'(t-')+N e-" '( ' - ' )  p(~-)~(~ ") d'r 

where p(t)= ]]A2(t)-Al(t)]].  
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The proof  of Lemma 4 follows from Lemma 3. [] 

Theorem 8. Let the following conditions be satisfied: 
1. The operators Q, (n = 1, 2 , . . . )  are invertible. 
2. The operator-valued function A( t )  is compact and the spectra of 

all w-limiting operators of A( t )  lie in the half-plane Re h <-Vo(Vo> 0). 
3. The operator-values function A( t )  satisfies coneition S~.L for e > 0 

small enough and L large enough and the numbers e and L depend only 
on the set of the co-limiting operators of A(t ) .  

4. For n = 1, 2 , . . . ,  the inequality ]IQ, II <-1 holds. Then the general 
exponent % of the impulsive equation (1), (2) is negative. 

Proof In view of (8) and conditions (1) and (3) of Theorem 8, we 
have % < ~.  From condition 2 of Theorem 8 it follows that for r large 
enough the following inequality holds: 

[[A( t ) -A( . r ) I [<e  (.r<-t<-~'+L) 

From Lemma 6.3 of Daleckii and Krein (1974) it follows that there exists 
a number To > 0 such that for r > To we have 

HeA(r)tll ~ No e -~~ (25) 

where No and v are constants. We set a = r, b = r+ L, Al (  t) =-- A(  r), Az( t) = 
A(  t) (r<_ t <_ r+  L). Let W( t, s) and Wl( t, s) be the respective evolutionary 
operators of the impulsive equation (1), (2) with operator-valued functions 
A( t )  and A~(t). For ]lWl(t,s)ll for t~( t , , t ,+~] ,  sE( t k_ l , t k ]  , k<_n, the 
following estimate holds: 

II w~( t, s)ll = II U(t, t , ) Q , U (  t,, t ._~)Q,_, . . . Qk+, U( tk+l, tk) 

QkU( tk, S)II = IleA<~)(t-'~ Q. eA(~(~"-'"-OQ,-, " " " Qk+l eA('~)(tk+r--tk) 

Qk eA('~)Ok--S)Ii --- No e-~o~'-~) 

By Lemma 4 for z<_ s---t <_ ~'+ L we obtain the following estimate for 

II w(t, s)ll: 

[ I  ] ]]W(t ,s) l l<-Noexp No I [ e ( r ) - e ( r ) l l  dr 

No exp [ - (Vo-  N o e ) ( t - s ) ]  

= No e x p [ - v ( t - s ) ]  

where v = Vo- No~. Choose e < Vo/No, i.e., v > 0. Then ]1W0" + L, ~-)H -< 
No e -"L. Choose L >  (In No) / (Vo-  Noe) and obtain ]1W(r+ L, r)ll ~ q < 1, 
where q = No e-~L. 
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The assertion of  Theorem 8 follows from the fact that Kg < co and from 
Theorem 6. [] 
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